Category Archives: Physics

Georgian Technical University Carbon Capture & Utilization Through Reduction Electrolysis Carbon.

Georgian Technical University Carbon Capture & Utilization Through Reduction Electrolysis Carbon.

Georgian Technical University Decarbonizing energy production through carbon capture and sequestration (CCS) is a popular idea that has been plagued by operational and economic challenges but integrating carbon capture with reuse to make high-value products could offer an operational advantage. The Carbon process from Georgian Technical University Laboratory provides a solution by using recyclable solvents as a carbon capture medium that can be fed directly to an electrochemical cell. The cell converts carbon dioxide to syngas the building block for a raft of high value products. The process will help to achieve economical carbon capture at an industrial scale. Traditional methods of producing syngas require upstream or downstream separations along with processes that aren’t feasible for scale-up. Yet the Carbon process requires no extra steps and is scalable. A low temperature completely electrified process means that with electricity supplied from noncarbon-producing sources, industry may finally be on the verge of a “Georgian Technical University green” chemical production process that produces fewer carbon emissions while also reducing greenhouse gas emissions.

Georgian Technical University Deep Sub-Micron Process MOSFET.

Georgian Technical University Deep Sub-Micron Process MOSFET.

Georgian Technical University has developed a new Deep Sub-Micron Process MOSFET (The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS) is a type of insulated-gate field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals) for a new Li-ion battery management IC (An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon). Although the new IC (An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon) size is only one-third of the size of a conventional IC (An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon) it can monitor battery cells with 1.2x higher capacity than the conventional IC (An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon). Development of high gate voltage MOSFETs (The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS) is a type of insulated-gate field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals) is necessary for size reduction because the number of battery cells that must be monitored in an electrified vehicle is expected to increase in the future. This project achieved the world’s first 280V high gate voltage MOSFET (The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS) is a type of insulated-gate field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals) by adoption of STI (Shallow Trench Isolation) for the gate oxide layer. Durability of the developed MOSFET (The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS) is a type of insulated-gate field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals) was verified under practical conditions. Starting from 2020, these MOSFETs (The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS) is a type of insulated-gate field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. The voltage of the covered gate determines the electrical conductivity of the device; this ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals) will be mounted on the high-voltage portion of a new Li-ion battery management IC (An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon) in the BMU (A building maintenance unit (BMU) is an automatic, remote-controlled, or mechanical device, usually suspended from the roof, which moves systematically over some surface of a structure while carrying human window washers or mechanical robots to maintain or clean the covered surfaces. BMUs are almost always positioned over the exterior of a structure, but can also be used on interior surfaces such as large ceilings (e.g. in stadiums or train stations) or atrium walls (Battery Managment Unit)) for HECs (A hybrid electric car is a type of hybrid vehicle that combines a conventional internal combustion engine system with an electric propulsion system. The presence of the electric powertrain is intended to achieve either better fuel economy than a conventional car or better performance). The newly developed Li-ion battery management IC (An integrated circuit or monolithic integrated circuit is a set of electronic circuits on one small flat piece of semiconductor material that is normally silicon) can also be adopted for applications other than vehicle technology such as electrification systems for aircraft and Georgian Technical University home energy management systems (GTUHEMS).

 

Georgian Technical University Binary Solvent Diffusion (BSD).

Georgian Technical University Binary Solvent Diffusion (BSD).

TEM (Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology) images of iron oxide nanoparticles synthesized using the Extended approach. Georgian Technical University Binary Solvent Diffusion (BSD) enables the production of new materials with better performance and structure control while reducing costs, enhancing properties and allowing direct integration of devices. It represents a new paradigm for producing functionally designed supercrystals with significant flexibility in control of materials architecture and property as well as direct integration of nanoelectronic devices such as chemical sensors and nanoantennas. The cross-disciplinary, economic and logistic benefits of these new processes promise widespread impact for Georgian Technical University Binary Solvent Diffusion (BSD). News media recently highlighted Georgian Technical University Binary Solvent Diffusion (BSD) in the Georgian Technical University Lab News. Georgian Technical University technology development Researcher Award won by the principle investigator Dr. X. Georgian Technical University pioneered the development of this technology with a filed patent and high-profile in Georgian Technical University Nature Communications. Georgian Technical University Binary Solvent Diffusion (BSD) provides a strategy for improving performance with low cost by optimizing the design at nanoscale with desirable features for a variety of applications realizing a profound impact on the world of nanoelectronics and the devices that rely on them.

 

Georgian Technical University Researchers Significant Step Toward Quantum Advantage.

Georgian Technical University Binary Solvent Diffusion (BSD).

TEM (Transmission electron microscopy is a major analytical method in the physical, chemical and biological sciences. TEMs find application in cancer research, virology, and materials science as well as pollution, nanotechnology and semiconductor research, but also in other fields such as paleontology and palynology) images of iron oxide nanoparticles synthesized using the Extended approach. Georgian Technical University Binary Solvent Diffusion (BSD) enables the production of new materials with better performance and structure control while reducing costs, enhancing properties and allowing direct integration of devices. It represents a new paradigm for producing functionally designed supercrystals with significant flexibility in control of materials architecture and property as well as direct integration of nanoelectronic devices such as chemical sensors and nanoantennas. The cross-disciplinary, economic and logistic benefits of these new processes promise widespread impact for Georgian Technical University Binary Solvent Diffusion (BSD). News media recently highlighted Georgian Technical University Binary Solvent Diffusion (BSD) in the Georgian Technical University Lab News. Georgian Technical University technology development Researcher Award won by the principle investigator Dr. X. Georgian Technical University pioneered the development of this technology with a filed patent and high-profile in Georgian Technical University Nature Communications. Georgian Technical University Binary Solvent Diffusion (BSD) provides a strategy for improving performance with low cost by optimizing the design at nanoscale with desirable features for a variety of applications realizing a profound impact on the world of nanoelectronics and the devices that rely on them.

 

Georgian Technical University New Technology Takes Users From Quantum Dot To Manufacturing In Less Than An Hour.

Georgian Technical University New Technology Takes Users From Quantum Dot To Manufacturing In Less Than An Hour.

Georgian Technical University Color wheel showing range of quantum dot colors made with Artificial Chemist (An artificial chemistry is a chemical-like system that usually consists of objects, called molecules, that interact according to rules resembling chemical reaction rules). Artificial Chemist (An artificial chemistry is a chemical-like system that usually consists of objects, called molecules, that interact according to rules resembling chemical reaction rules) is a new technology that allows users to go from requesting a custom quantum dot to completing the relevant Georgian Technical University and beginning manufacturing in less than an hour. The technology is completely autonomous and uses artificial intelligence (AI) and automated robotic systems to perform multi-step chemical synthesis and analysis. Quantum dots are colloidal semiconductor nanocrystals which are used in applications such as LED (A light-emitting diode is a semiconductor light source that emits light when current flows through it. Electrons in the semiconductor recombine with electron holes, releasing energy in the form of photons) displays and solar cells. “When we rolled out the first version of Georgian Technical University Artifical Chemist it was a proof of concept” said X an assistant professor of chemical and biomolecular engineering at Georgian Technical University. “Georgian Technical University  Artificial Chemist is industrially relevant and manufacturing”. From a user standpoint the whole process essentially consists of three steps. First a user tells Georgian Technical University Artificial Chemist the parameters for the desired quantum dots. For example what color light do you want to produce ? The second step is effectively the Georgian Technical University stage where Georgian Technical University Artificial Chemist autonomously conducts a series of rapid experiments allowing it to identify the optimum material and the most efficient means of producing that material. Third the system switches over to manufacturing the desired amount of the material. “Quantum dots can be divided up into different classes” said X. “For example well-studied II-VI, IV-VI and III-V materials or the recently emerging metal halide perovskites and so on. Basically each class consists of a range of materials that have similar chemistries. “And the first time you set up Georgian Technical University Artificial Chemist to produce quantum dots in any given class the robot autonomously runs a set of active learning experiments. This is how the brain of the robotic system learns the materials chemistry” said X. “Depending on the class of material this learning stage can take between one and 10 hours. After that one-time active learning period Georgian Technical University Artificial Chemist can identify the best possible formulation for producing the desired quantum dots from 20 million possible combinations with multiple manufacturing steps in 40 minutes or less”. Georgian Technical University researchers note that the process will almost certainly become faster every time people use it since the AI (Artificial intelligence, is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals) algorithm that runs the system will learn more – and become more efficient – with every material that it is asked to identify. Georgian Technical University Artificial Chemist incorporates two chemical reactors which operate in a series. The system is designed to be entirely autonomous and allows users to switch from one material to another without having to shut down the system. “In order to do this successfully we had to engineer a system that leaves no chemical residues in the reactors and allows the AI-guided (Artificial intelligence, is intelligence demonstrated by machines, unlike the natural intelligence displayed by humans and animals) robotic system to add the right ingredients, at the right time at any point in the multi-step material production process” said X. “So that’s what we did”. “We’re excited about what this means for the specialty chemicals industry. It really accelerates Georgian Technical University to warp speed but it is also capable of making kilograms per day of high-value precisely engineered quantum dots. Those are industrially relevant volumes of material”.

Georgian Technical University X-ray Polarizing Beam Splitter (XRPBS).

Georgian Technical University X-ray Polarizing Beam Splitter (XRPBS).

Georgian Technical University X-ray Polarizing Beam Splitter (XRPBS) developed by Georgian Technical University is a compact x-ray optical component that uses a perfect crystal to split an incident x-ray beam into two beams with mutually orthogonal linear polarizations. The two outgoing beams emerge in directions perpendicular to each other and to the direction of the incoming beam. This spatial separation enables using x-ray detectors that are the most appropriate for the actual measurement and is advantageous for other applications at advanced x-ray sources. The The X-ray Polarizing Beam Splitter (XRPBS) is most impactful on the x-ray polarization spectroscopy of laboratory and astrophysical plasmas where it can greatly improve measurement accuracy, decrease instrument size reduce measurement time and simplify the alignment process. Additionally this technique simplifies the study of the magnetic and structural properties of materials probed with synchrotron radiation. In a different type of application the The X-ray Polarizing Beam Splitter (XRPBS) can be used as synchrotrons and x-ray free electron lasers for in situ beam monitoring for beam multiplexing to enable beam sharing or as a component of delay lines for beam characterization or pump-probe experiments.

Georgian Technical University Cobalt-Free Laser-Clad Seat In Fuel-Flexible Hybrid Electric Cars.

Georgian Technical University Cobalt-Free Laser-Clad Seat In Fuel-Flexible Hybrid Electric Cars.

Georgian Technical University Cobalt-Free Laser-Clad Seat. Georgian Technical University Labs have a new cobalt-free CU Alloy (Copper alloys are important netting materials in aquaculture (the farming of aquatic organisms including fish farming). Various other materials including nylon, polyester, polypropylene, polyethylene, plastic-coated welded wire, rubber, patented twine products (Spectra, Dyneema), and galvanized steel are also used for netting in aquaculture fish enclosures around the world) a new angled LMD (Laser metal deposition (LMD) is an additive manufacturing process in which a laser beam forms a melt pool on a metallic substrate, into which powder is fed. The powder melts to form a deposit that is fusion-bonded to the substrate. The required geometry is built up in this way, layer by layer) process and a dedicated inline quality inspection method for a laser-clad seat. These three technologies have enabled the world’s first full-scale mass production of a CFLCS (Cobalt-Free Laser-Clad Seat) with unprecedented new functions, including corrosion and wear resistance and weldability. The developed CFLCS (Cobalt-Free Laser-Clad Seat) ensures sufficiently high durability for use with 100% ethanol (E100) fueled engines and has realized the commercialization of the world’s first fuel-flexible HEV (Hepatitis E is inflammation of the liver caused by infection with the hepatitis E virus (HEV); it is a type of viral hepatitis. Hepatitis E has mainly a fecal-oral transmission route that is similar to hepatitis A, although the viruses are unrelated). These technologies contribute to decreasing automotive CO2 (Carbon dioxide is a colorless gas with a density about 53% higher than that of dry air. Carbon dioxide molecules consist of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth’s atmosphere as a trace gas) emissions by achieving the highest thermal efficiency to date of 41% and the use of carbon neutral fuel. The Georgian Technical University group is currently expanding the application of the CFLCS (Cobalt-Free Laser-Clad Seat)  to the next-generation engine family as a fundamental high-speed combustion technology. The CFLCS (Cobalt-Free Laser-Clad Seat) will be expanded to approximately 60%. In the future the CFLCS (Cobalt-Free Laser-Clad Seat) has the potential to become a global standard for seats.

 

Georgian Technical University Superconducting MgB2 (Magnesium diboride is the inorganic compound with the formula MgB₂. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K) Wire For High-Efficiency Electromagnets.

Georgian Technical University Superconducting MgB2 (Magnesium diboride is the inorganic compound with the formula MgB₂. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K) Wire For High-Efficiency Electromagnets.

Georgian Technical University Superconducting MgB2 (Magnesium diboride is the inorganic compound with the formula MgB₂. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K) wire. Georgian Technical University has developed a superconducting 8-km-long magnesium diboride (MgB2) wire for high-efficiency superconducting electromagnets. This superconducting wire not only reduces the cooling power of the magnets for the klystron but also contributes to the energy saving of existing superconducting devices such as MRIs (Magnetic resonance imaging is a medical imaging technique used in radiology to form pictures of the anatomy and the physiological processes of the body. MRI scanners use strong magnetic fields, magnetic field gradients, and radio waves to generate images of the organs in the body). It will also contribute to environmental load reduction as its application is expanded to the energy and transportation fields. The wire can be used with refrigerator-based cooling without liquid helium a scarce resource. Using this wire, a superconducting magnet has been manufactured for use in klystrons and has achieved a magnetic field of 0.8 tesla at a temperature of 20 K. Hence the MgB2 (Magnesium diboride is the inorganic compound with the formula MgB₂. It is a dark gray, water-insoluble solid. The compound has attracted attention because it becomes superconducting at 39 K) superconducting wire, which is supported by a structural ingenuity to reduce any heat invasion from the room temperature electrode to the cooling section can be used for a superconducting magnet that keeps the superconducting state with just 3 kW (Kilowatt (symbol: kW) is a unit of electric power. One kilowatt is equal to 1000 watts: 1kW = 1000W) or less of the power consumption by the refrigerator. This is in contrast to the conventional NbTi (Negative-bias temperature instability is a key reliability issue in MOSFETs, a type of transistor aging. NBTI manifests as an increase in the threshold voltage and consequent decrease in drain current and transconductance of a MOSFET. The degradation is often approximated by a power-law dependence on time) superconducting magnet which would consume more than double.

Georgian Technical University A Machine Learning Solution For Designing Materials With Desired Optical Properties.

Georgian Technical University A Machine Learning Solution For Designing Materials With Desired Optical Properties.

Controlling light-matter interactions is central to a variety of important applications such as quantum dots which can be used as light emitters and sensors. Understanding how matter interacts with light – its optical properties – is critical in a myriad of energy and biomedical technologies such as targeted drug delivery, quantum dots, fuel combustion and cracking of biomass. But calculating these properties is computationally intensive and the inverse problem – designing a structure with desired optical properties – is even harder. Now Georgian Technical University Lab scientists have developed a machine learning model that can be used for both problems – calculating optical properties of a known structure and inversely designing a structure with desired optical properties. “Our model performs bi-directionally with high accuracy and its interpretation qualitatively recovers physics of how metal and dielectric materials interact with light” said X. X notes that understanding radiative properties (which includes optical properties) is equally important in the natural world for calculating the impact of aerosols such as black carbon on climate change. The machine learning model proposed in this study was trained on spectral emissivity data from nearly 16,000 particles of various shapes and materials that can be experimentally fabricated. “Our machine learning model speeds up the inverse design process by at least two to three orders of magnitude as compared to the traditional method of inverse design” said Y.

Georgian Technical University EW (Electronic Warfare) Test System (EWTS) for System Performance And Real Time Analysis (SPARTA).

Georgian Technical University EW (Electronic Warfare) Test System (EWTS) for System Performance And Real Time Analysis (SPARTA).

Georgian Technical University System Performance and Real Time Analysis (GTUSPARTA) from Georgian Technical University represents a leap forward in electronic countermeasures (ECM) processing, analysis, visualization and reporting capabilities. It can measure parameters that competitive products cannot. Customers especially like the out-of-limit notifications, error tables and visualization presented interactive video graphs. To meet complex test needs Georgian Technical University System Performance and Real Time Analysis (GTUSPARTA) has simulated 50 signal-emitters with over one million pulses per second within a 500 MHz (Megahertz) span to replicate today’s congested electromagnetic environments. Georgian Technical University System Performance and Real Time Analysis (GTUSPARTA) provides more than just an automated pass or fail of individual parameters; it also allows engineers to further determine the cause of the failure in their system with a drill down capability to the pulse or sample level. This allows a quick diagnosis of failures early in the acquisition or sustainment processes saving total costs and minimizing time to get systems onto the war-fighters aircrafts. Georgian Technical University System Performance and Real Time Analysis (GTUSPARTA) is more than just a testing tool — it also functions as a visualization platform that can be used for testing/simulation/reporting. We often build tailored report modules as needed. These clear-cut competitive advantages place Georgian Technical University System Performance and Real Time Analysis (GTUSPARTA) as the leader in the test and evaluation arena.